Code No: 133BD

(50 Marks)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 MATHEMATICS – IV

(Common to CE, EEE, ME, ECE, CSE, EIE, IT MCT, ETM MMT, AE, MIE, PTM, CEE, MSNT) Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

	(2	5 Marks)
l.a)	State the necessary and sufficient conditions for a function $f z = u + iv$ to be a	analytic.
		[2]
b)	Show that $f = z^2$ is not analytic at any point.	[3]
c)	State Cauchy's integral theorem.	[2]
d)	Find the poles and the residues at the poles of the function $f' z = \frac{e^z}{\cos \pi z}$.	[3]
e)	Define bilinear transformation and cross ratio.	[2]
f)	Find the image of the circle $z = 2$, under the transformation $w = z + 3 + 2i$.	[3]
g)	State Fourier integral theorem.	[2]
h)	Expand $f x = \pi x - x^2$ in a half range sine series in $0, \pi$.	[3]
i)	Classify the partial differential equation $u_{xx} + 6u_{xy} + 2u_{yy} + 2u_x - 2u_y + u = x^2 y$.	
	from C	[2]
j)	Write the three possible solutions of the heat equation.	
	$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$	[3]

PART-B

2.a) If f z is a regular function of z, prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad f z^2 = 4 \quad f' z^2.$

b) Let $f(z) = u(r, \theta) + iv(r, \theta)$ be an analytic function. If $u = -r^3 \sin 3\theta$, then construct the corresponding analytic function f(z) in terms of z. [5+5]

OR

- 3.a) Show that the function f(z) defined by $f(z) = \frac{x^2 y^3 (x+iy)}{x^6+y^{10}}$ for $z \neq 0$, is not analytic at the origin, even though it satisfies the f(0) = 0Cauchy-Riemann equations at the origin.
 - b) Determine the analytic function whose real part is $\log x^{-2} + y^2$. [5+5]

Download all NOTES and PAPERS at StudentSuvidha.com

4. Represent the function
$$\frac{1}{z^2-4z+3}$$
 in the domain
(a) $1 < z < 3$ (b) $z < 1$. [10]
5.a) Expand the function $f z = \frac{z}{z+1} \frac{z}{z+2}$ about $z = -2$, and name the series thus obtained.
b) Evaluate $\frac{e^z}{c^{\frac{z}{z+3}} \frac{z}{z+2}} dz$, where *C* is the circle $z - 1 = \frac{1}{2}$. [5+5]
6. Evaluate the integral using contour integration $\frac{2\pi}{0} \frac{d\theta}{2+\cos\theta}$. [10]
7. Show that the transformation $w = i \frac{1-z}{1+z}$ transforms the circle $z = 1$ into the real axis of w plane and the interior of the circle $z < 1$ into the upper half of the w plane. [10]
8. Find the Fourier transform of $f x = \frac{1-x^2}{0}$, $\frac{if}{if} \frac{x}{x} < 1$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$. [10]
9.a) Obtain the half range cosine series for $f x = \frac{kx}{k}$, for $0 \le x < \frac{L}{2}$. [10]

b) Find the Fourier sine transform of $f(x) = e^{-x}$. Hence show that $\int_{0}^{x} \frac{x \sin mx}{x^{2}+1} dx = \frac{\pi}{2}e^{-m}.$ [5+5]

- 10. A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form $y = a \sin \frac{\pi x}{L}$ from which it is released at timet = 0. Find the displacement of any point at a distance x from one end at time t. [10]
 - OR
- 11. Write down the one dimensional heat equation. Find the temperature (x, t) in a slab whose ends x = 0 and x = L are kept at zero temperature and whose initial temperature f(x) is given by

$$f x = \begin{cases} k, & when \ 0 < x < \frac{1}{2}L \\ 0, & when \ \frac{1}{2}L < x < L \end{cases}$$
 [10]

---00000----

Download all NOTES and PAPERS at StudentSuvidha.com